
Contact Information:

info@biglever.com 
www.biglever.com 
+1-512-777-9552

This paper was presented at
an INCOSE International
Symposium. 

Product Line Engineering Comes to

the Industrial Mainstream

Product line engineering (PLE) is a systems engineering discipline to engineer a

portfolio of related products in an efficient manner, taking full and ongoing ad-

vantage of the products’ similarities while respecting and managing their differ-

ences. Managing a portfolio as a single entity with variation, as opposed to a

multitude of separate products, brings enormous efficiencies in production and

maintenance.

This paper shows that PLE has now matured into a repeatable, industrial-

strength engineering discipline. We define and explore the concepts central to

modern product line engineering, and illustrate how it is becoming applied in

two of the most challenging systems engineering domains of all: aerospace and

defense, and automotive.

What Is Product Line Engineering?

Product line engineering is a way to engineer a portfolio of related products in an effi-
cient manner, taking full advantage of the products’ similarities while respecting and
managing their differences. By “engineer” we mean all of the activities involved in
planning, producing, delivering, deploying, sustaining, and retiring products.

Born in the 1980s in the software field, but now having grown well beyond those ear-
ly roots, PLE offers large savings observed from engineering the whole family rather
than separately engineering each member. Numerous case studies show that exploit-
ing the commonality throughout the products’ total life cycles can return substantial
improvements in time to market, cost, portfolio scalability, engineer productivity, and
product quality [24]; no other engineering paradigm shift has, to our knowledge,
brought about results that rival these.

PLE as a Factory

An analogy with factory-based manufacturing serves to illuminate the important con-
cepts. Manufacturers have long used analogous engineering techniques to create a
product line of similar products using a common factory that assembles and config-
ures parts designed to be reused across the varying products in the product line.

For example, automotive manufacturers can create thousands of unique variations of
one car model using a single pool of parts carefully designed to be configurable and
factories specifically designed to configure and assemble those parts.

In PLE, the configurator is the factory’s automation component; the “parts” are the
digital assets in the factory’s supply chain. A statement of the properties desired in the
end product tells the configurator how to configure the assets.

To establish the PLE Factory, the organization creates a “superset” supply chain of
digital assets that can be shared across the entire product line. Figure 1, shown on
page 2, illustrates. The PLE Factory’s supply chain is at the left, in the form of shared
assets that are configurable because they include variation points that are expressed in
terms of the features available in each of the products.

Copyright © 2020 BigLever Software, Inc. 1

Born in the 1980s in the
software field, but now
having grown well beyond
those early roots, product line
engineering offers large
savings observed from
engineering the whole family
rather than separately
engineering each member.

A product specification at the top tells the configurator how to configure the assets
coming in from the left. The resulting products, assembled from the configured assets,
emerge on the right. This enables the rapid production of any variant of any of the
assets for any of the products in the portfolio. Once this production line capability is
established, products are instantiated – derived from the shared assets – rather than
manually created.

Figure 1: PLE seen as a factory.

The products in the portfolio are described by the properties they have in common
with each other and the variations that set them apart. The products can comprise any
combination of software, systems in which software runs, or non-software systems
that have software-representable artifacts (such as requirements, engineering models,
or development plans) associated with them.

In this context “product” means not only the primary entity being built and delivered,
but also all of the artifacts that are produced along with it. Some of these support the
engineering process (such as requirements, project plans, design modes, and test cas-
es), while others are delivered alongside the thing being built (such as user manuals,
shipping labels, and parts lists).

Assets are the “soft” artifacts associated with the engineering lifecycle of the prod-
ucts, the building blocks of the products in the product line. Assets can be whatever
artifacts are representable digitally and either constitute part of a product or support
the engineering process to create a product. Four kinds of shared assets are shown in
Figure 1, but those are just examples.

Shared assets can include, but are not limited to, requirements, design specifications,
design models, source code, build files, test plans and test cases, user documentation,
repair manuals and installation guides, project budgets, schedules, and work plans,
product calibration and configuration files, data models, parts lists, and more. Assets
in PLE are engineered to be shared across the product line.

PLE Contrasted With Product-Centric Development

PLE stands in contrast to traditional product-centric development, in which each indi-
vidual product is developed and evolved independently from other products, or (at
best) starts out as a cloned copy of a similar product that is then changed to suit the
new product’s specific needs. Product-centric development takes very little advantage
of the commonalities among products in a portfolio after the initial clone operation. In

Copyright © 2020 BigLever Software, Inc. 2

The products in the portfolio
are described by the
properties they have in
common with each other
and the variations that set
them apart.

particular, it derives very little benefit from commonality in a product’s sustainment
or maintenance phase, where data shows most products consume up to 90% of their
project resources.

Figure 2 shows a production shop in which N products are developed and maintained.
In this view, each product comprises requirements, design models, source code, test
cases and so forth, as shown in the engineering V model. Each engineer works pri-
marily on a single product. When a new product is launched, its project copies the
most similar assets it can find, and starts adapting to meet the new product’s needs.

Figure 2: Product-centric development yields O(N2) complexity

To see how this form of reuse can lead to intractable complexity, assume that a defect
is found in Product B, and that the defect is traced to an ambiguous or incorrect re-
quirement in Product B’s requirements. The Product B team fixes the error, re-designs
as necessary, then fixes the code and test cases before re-deploying Product B. Prod-
uct B is now healthy again.

But suppose that the defect in Product B’s requirements was “inherited” when the
Product B team copied the requirements from Product A. Suppose further that the
source code for Product N was copied from Product B’s (defective) source code, and
the test cases for Product N were similarly “borrowed” from Product A’s (inadequate)
test cases.

To really root out the defect from the entire portfolio, each of the N product teams
should really confer with each of the other N-1 product teams. These communication
paths are shown in red in Figure 2. This communication obligation imposes an over-
head that grows as the square of the number of products. This complexity will quickly
overwhelm any engineering staff; in order to get their products out the door on time
and on budget, each product team will focus more on their product silo and less on
taking advantage of the commonalities and interdependencies among the other prod-
ucts. The result is divergent product silos, low degrees of sharing, and high duplica-
tion of effort across the product silos to fix the same defect multiple times in multiple
products, or to independently implement the same enhancements in different ways in
different products.

Figure 1 alluded to PLE as a factory, and that analogy can be brought to bear to reme-
dy the O(N2) problem of portfolio management. In a manufacturing factory, a defec-

Copyright © 2020 BigLever Software, Inc. 3

With product-centric
development, complexity will
quickly overwhelm any
engineering staff; in order to
get their products out the
door on time and on budget,
each product team will focus
more on their product silo
and less on taking
advantage of the
commonalities and
interdependencies among
the other products.

tive product would not be fixed by one-off repairs to the product itself. Rather, the
factory, its supply chain, and the manufacturing process itself would be scoured to
find the source of the defect.

So it is with PLE. Rather than fix a defective product, PLE engineers fix the shared
asset(s) that need to be modified (perhaps by adding a new variation point) in order to
produce the product correctly. Then, the configurator is used to re-generate the prod-
uct, as well as any other product affected by the changes in the shared assets. Since
re-generation has a low and fixed cost, it matters very little whether 2 or 200 or 2000
products need to be re-generated. Thus, fixing a defect, making a systematic en-
hancement, or carrying out any other kind of portfolio-wide change becomes an O(N)
operation.

Early Approaches to PLE

Parnas’s seminal paper on program families in 1976 [20] presented the idea that simi-
lar programs could be treated as a family rather than as a separate and unrelated set.
(It takes only a bit of imagination to see that the concept applies to systems as well as
programs.)

Domain analysis, exemplified by the Feature Oriented Domain Analysis (FODA)
method [12], provided a way to express the commonality and variations found in a set
of systems or products. FODA provided a useful definition of a feature, which is “a
prominent or distinctive user-visible aspect, quality, or characteristic of a software
system or systems,” and this definition still serves well in the PLE world. FODA led
the way to a wide variety of feature modeling languages, which allow domain model-
ers to express features and their allowable combinations.

The U.S. Department of Defense Advanced Research Projects Agency’s STARS
project (“Software Technology for Adaptable, Reliable Systems”) turned its attention
to software product line development in the early to mid 1990s [10]. STARS instilled
the dichotomy between domain engineering (the construction of reusable core assets)
and application engineering (the selection, application, and augmentation of those
assets to build products).

Generative programming [6] involves the use of domain-specific languages in which
to specify a product, and a generator to process a product description written in that
language to turn out a product. In 1999, Weiss and Lai adopted this approach for a
product line methodology called FAST (Family-Oriented Abstraction, Specification,
and Translation) [27]. Theirs was the first of several books treating PLE as a topic of
study.

Case studies of successful software product lines began to emerge in the mid-1990s.
These included STARS demonstration projects, but also commercial successes such
as [3]. These studies revealed that successful product lines required more than a tech-
nical approach, but also strong management and business acumen as well [19].
Movements began to coalesce to explore product lines from this more holistic ap-
proach, first in Europe as a series of Program Families workshops and then in the
United States with the creation of the Product Line Practice research program at the
Software Engineering Institute and its creation of the Software Product Line Confer-
ence (SPLC) series of international conferences (http://splc.net/history.html).

These approaches have yielded a rich legacy of successful product line point solutions
[4][18][22][25][26]. However, no approach in these early years rose to the level of
what could be called a repeatable, prescriptive, methodological engineering disci-
pline.

Modern or Second Generation PLE

The advent of industrial strength configurators in the early 2000s resolved many of
the weaknesses of the early approaches. The presence of reliable commercially avail-
able automation that could work at industrial scales rendered much of the early

Copyright © 2020 BigLever Software, Inc. 4

Case studies of successful
software product lines began
to emerge in the mid-1990s.
Early approaches yielded a
rich legacy of successful
product line point solutions.
However, no approach in
these early years rose to the
level of what could be called
a repeatable, prescriptive,
methodological engineering
discipline.

methodological “timidity” moot. The configurators available now strongly support the
factory model of Figure 1, and enable the accompanying methodology to do so as
well.

In the last several years, an alignment of PLE approaches, centered around the factory
approach, has emerged that some observers are calling “Second Generation
PLE” (2GPLE) [9][15][16] — also known as “Feature-based PLE”.

It has a number of important characteristics that distinguish it from (while building
upon) what came before.

Characteristic 1: Features are the lingua franca to express

product differences across the lifecycle

A feature, to paraphrase [12], is a distinguishing characteristic of a product, usually
visible to the customer or user of that product. An example is a function that one
product can perform that others cannot.

The concept of “feature” allows a consistent abstraction to be employed when making
choices from a whole product configuration all the way down to the deployment of
software components within a low-level subsystem in the architecture. In practice, it
turns out that stakeholders throughout the entire portfolio’s environment are fluent in
the language of features. Marketers sell features that customers buy; testers test fea-
tures; parts are added to support features; software programmers write code to imple-
ment features; requirements engineers specify features, and so forth.

All of these roles are able to communicate meaningfully in this lingua franca, or
common language, as opposed to the arcane languages of each one’s discipline.

Features express the diversity in the product line for a system or subsystem. Feature
declarations are analogous to the choices that are available when you buy a new car:
Two door or four door? Sport package, luxury package, or economy package? Moon
roof? Feature declarations typically express the customer-visible diversity among the
products in a product line.

The product line literature is rife with feature modeling languages and constructs, but
experience is showing that a very small and simple set of feature modeling constructs
suffices for describing all of the necessary feature information for large and very
complex product lines [9]. Figure 3 shows a partial example of a feature model in
GearsTM (a leading PLE modeling and configuration tool) showing the choices
available for an automobile’s power door locks system.

Figure 3: Example of a partial feature model in Gears [13]

Feature assertions. Feature assertions describe constraints and dependencies among
the features. For example, feature assertions in Gears express REQUIRES or EX-

Copyright © 2020 BigLever Software, Inc. 5

The concept of “feature”
allows a consistent
abstraction to be employed
when making choices from a
whole product configuration
all the way down to the
deployment of software
components within a low-
level subsystem in the
architecture.

CLUDES relations. They express the constraint that a feature (or combination of fea-
tures), if present, either requires or excludes the presence of another feature (or com-
bination of features). For example, if we want to make sure that certain features are
not available when we’re selling our product in a certain region, we could express that
constraint with an EXCLUDES assertion between the region feature and the features
we want to restrict. Feature assertions are a critical aspect of building feature models;
they capture the knowledge necessary to prevent unacceptable (or even illegal) prod-
ucts from being constructed.

Feature profiles. Feature profiles are used to reflect choices from among the avail-
able features for the purpose of instantiating a product. A feature profile is associated
with a subsystem or a product, and reflects the actual choices you make: Two door
with sport package, but no moon roof; or four door with luxury package and moon
roof. The values assigned in feature profiles must satisfy the constraints and depen-
dencies expressed by the feature assertions. Feature profiles let us escape the deadly
combinatoric complexity of huge product spaces that spring up from even modestly-
sized feature trees. Of the astronomical variety available, the set of feature profiles
clearly enumerates which (small) set of products are actually of interest.

Feature Catalog: To establish a PLE Factory, a “Feature Catalog” is created for the
entire product line. The Feature Catalog contains all the feature options available for
all the products in the product line, and is used by individuals and teams across the
engineering and operations lifecycle, and across organizational functions to gain
shared understanding of the product line’s diversity.

Bill-of-Features: The features chosen for each product are specified in the Bill-of-
Features for that product. The Bill-of-Features enables the automatic creation a prod-
uct instance by exercising variation points according to the features selected — with
the push of a button. Engineers now work on the shared asset supersets, the Feature
Catalog, and the Bills-of-Features. All development occurs inside the PLE Factory.

This Feature-based PLE approach allows the organization to establish a "single source
of feature truth” for the product line, which eliminates the need for multiple feature
management mechanisms across multiple tools and functions.

Characteristic 2: Consistent variation management in artifacts

from across the full lifecycle

Second Generation Feature-based PLE enforces consistent treatment of all shared
assets under the production infrastructure, so that a full set of demonstrably consistent
supporting artifacts can be systematically generated for each product.

In this approach, assets are designed with built-in variation points, which are places
in the asset that change depending on the product in which the asset is used. When a
product is built, the configurator uses the product’s feature-based description to “ex-
ercise” these variation points (that is, cause the change in the asset to occur to meet
the needs of the product) [14]. Variation point mechanisms comprise: including or
omitted the artifact; choosing one variant of the artifact (from an available set) to use
in the product; or making fine-grained choices within an artifact such as including or
omitting a section or model element or block of code.

Under this shared-asset-with-variation-points paradigm, the artifacts that engineers
create and maintain for the product line are supersets: Each has the content necessary
to support any product in the product line. The configurator’s job may be seen as ex-
ercising the variation points to filter away content until only that needed for the prod-
uct being built is left.

Variation points are expressed in terms of features, not products. The configurator
does its work by comparing feature-based expressions that define a variation point to
the feature choices that define a product. Hence, the assets are configured to support
feature selections; the supersets become product-agnostic. Among other benefits, this
makes adding a new product to the portfolio exceptionally easy.

Copyright © 2020 BigLever Software, Inc. 6

In 2GPLE — also known as
Feature-based PLE —
assets are designed with
built-in variation points,
which are places in the
asset that change
depending on the product in
which the asset is used.

Figure 4: V-model for system engineering, re-cast for PLE

Figure 4 shows the classic V-model for systems and software engineering. Each phase
is augmented by the addition of variation points (indicated by the gear symbol) to the
artifacts native to that phase. A Bill-of-Features for a product corresponds to the fea-
ture selections within the feature profiles for that product. The yellow arrows illustrate
that all of the variation points in all of the artifacts across the full lifecycle are syn-
chronously and consistently configured according to the single consolidated collec-
tion of feature selections in the Bill-of-Features.

Characteristic 3: CM that maintains assets, not products or asset

instantiations

Under the Feature-based 2GPLE discipline, the full superset of available PLE assets
(and not the individual products or systems) are managed under configuration man-
agement (CM). A new version of a product is not derived from a previous version of
the same product, but from the shared superset of PLE assets themselves.

Previous approaches to configuration management (CM) for product lines adopted a
“multi-dimensional” approach, claiming that CM for product lines requires CM for
core assets and CM for products, and also stating that “CM for product lines is there-
fore more complex than it is for single systems” [23]. In fact, a key tenet is to reduce
the complexity of product line CM to that for single products, and much less than that
for a suite of separately-managed products.

Under the PLE Factory paradigm, any defects are fixed in the shared assets, not the
products. The affected products can then be re-generated.

Characteristic 4: Supporting product lines across organizational

boundaries

Organizations, even small ones, often have separate divisions that work to support
their product line. Large organizations almost certainly do. These divisions may be
geographically or organizationally isolated from each other. In this case, it is imprac-
tical to expect everyone to work on the same feature model, the same set of shared
assets, and so forth. Certainly having one global collection of feature declarations for
an entire production line is impractical when features may number in the hundreds or
even thousands. Subsystem engineers have no interest or need to see all of the feature
diversity in other subsystems. For example, engineers for an automotive transmission
system do not need to see feature abstractions that capture the diversity in the enter-
tainment or GPS navigation system. It makes no sense to co-mingle them.

It makes much more sense to modularize the feature model in a way that corresponds
to the organizational structure of the enterprise. Although these structures can change

Copyright © 2020 BigLever Software, Inc. 7

Under the Feature-based
2GPLE discipline, the full
superset of available PLE
assets (and not the
individual products or
systems) are managed
under configuration
management. A new version
of a product is not derived
from a previous version of
the same product, but from
the shared superset of PLE
assets themselves.

over time, they make an excellent starting point and let the organization begin to
adopt PLE using familiar units.

For example, an automotive vehicle is composed from combinations of dozens of
subsystems, all the way from the engine and transmission down to the subsystems that
defog the mirrors and heat the driver’s seat. Each of these subsystems has features of
its own, which allow a vehicle team to pick and choose in order to define a car. In this
way, an automobile (like many complex systems in product lines) is managed like a
system of systems, and modeled as a product-line-of-product-lines. This lets engi-
neers work largely independently within the confines of their own organizational units
and domain expertise.

Characteristic 5: Industrial-Strength Automation

The last ingredient in Feature-based 2GPLE is a product configurator employed to
maintain configurations, and translate feature profiles into assets with their variation
points exercised in prescribed ways.

In the early days of PLE, the means of production could be manual, but for product
lines of any size or complexity or frequency of change, manual production is imprac-
tical; some form of automation is required.

Today there are special-purpose PLE tools called configurators that tie variation
points to a central feature model for the entire product line, and provide a set of
mechanisms for defining and exercising the variation points in all kinds of assets.
Examples of such tools include Gears [13], pure::variants [2], XVCL [11], Dopler [7],
and more.

The tooling needs to be able to support the construction and management of feature
models (including feature declarations, assertions, and profiles), shared assets of all
kinds and their variation points, support hierarchical production lines, and represent
the logic that maps from feature choices to asset instances. Further, it needs to either
provide version control for the models and artifacts or (even better) work seamlessly
on top of the user’s own choice of change management system. It needs to enforce the
assertions it has captured, and have a user interface that scales for work across organi-
zations with thousands of engineers whose experience working with engineering tools
will likely vary greatly.

Figure 5 provides a detailed view of the PLE Factory’s automated production line, the
underpinning of modern Feature-based 2GPLE approaches:

Figure 5: The PLE Factory’s Automated Production Line

Copyright © 2020 BigLever Software, Inc. 8

In 2010 General Dynamics
teamed with BigLever
Software (the PLE
technology provider) to
create the winning proposal
for the US Army’s Live
Training Transformation
(LT2) family of training
systems. This contract was
the first U.S. Army contract
focused specifically on
product line engineering as
a required part of the
solution.

PLE in Aerospace and Defense

The aerospace and defense (A&D) sector comprises companies and organizations that
make and procure defense products, aircraft, spacecraft, and related systems. One of
the most challenging application domains in all of engineering, A&D systems are
often at the cutting edge of technology with stringent and challenging requirements.
Many of the systems are safety-critical, with exacting, expensive, and (to date) indi-
vidual-product certification procedures attached.

In the context of Department of Defense procurement programs, a concern is that no
Program Office will spend its acquisition dollars to build generalized shared assets
that can be used in other programs. Another concern is that the PLE payoff is too far
in the future, outlasting the appointed tenure of any acquisition official who, to adopt
PLE, must choose to absorb the up-front cost on his watch so that his successor can
enjoy the benefits.

However, there are compelling examples appearing that show how PLE is bringing its
proven benefits to Program Offices as well as contractors [4].

US Army Live Training Transformation

In 2010 General Dynamics teamed with BigLever Software (the PLE technology
provider) to create the winning proposal for the US Army’s Live Training Transfor-
mation (LT2) family of training systems. Significantly, this contract was the first U.S.
Army contract focused specifically on product line engineering as a required part of
the solution.

The LT2 training and testing systems portfolio includes live, virtual, and constructive
training packaged in embedded and interoperable products that are fielded and used
throughout the world. Examples of the many types of training systems in the LT2
family include Military Operations on Urban Terrain (MOUT), Maneuver Combat
Training Center (MCTC), instrumented live-fire range training, and various Joint (that
is, inter-Service) training systems.

LT2 has long been a true software product line, using first-generation approaches. In
2010 the program made the transition to Feature-based 2GPLE. LT2 shared assets
include the open architectures, common software components, standards, processes,
policies, governance, documentation, and more, all leading to a common approach
and frameworks for developing live training systems.

The commonality behind LT2 facilitates the rapid development of new products, but
also ensures that products across the LT2 product line can communicate and interop-
erate with each other. This is important because large training exercises need to em-
ploy different kinds of training systems working together. The LT2 product line makes
use of plug and play components and applications that are common between products,
and permits changes, upgrades and fixes developed for one product to be applied to
others. This concept provides the inherent logistics support benefits that derive from
commonality, standardization and interoperability including the reduction of total life
cycle costs [21].

Maximizing asset sharing has proven to reduce fielding time and minimize program-
matic costs, while enhancing training benefits afforded to the soldier. Recognized as
the Army’s live training standard, the LT2 product line architecture, standards, assets,
and common operating environment have been used by more than 16 major Army and
Department of Defense live training programs with more than 130 systems fielded.

In addition, LT2’s Feature-based 2GPLE approach is exhibiting the following bene-
fits:

• More efficient integration of the Army products by the use of common standards
and products to meet training and test requirements

• Compatibility of objective system and products with evolving capabilities

• Wider interoperability before executing subsystem and device production

Copyright © 2020 BigLever Software, Inc. 9

Maximizing asset sharing
has proven to reduce
fielding time and minimize
programmatic costs, while
enhancing training benefits
afforded to the soldier.

• Reduced total lifecycle costs to include acquisition, development, testing, fielding,
sustainment and maintenance.

This continuing transformation has generated a significant return on investment (Fig-
ure 6) to date within the Army’s live training system acquisition portfolio. The first
generation approaches generated over $300M in cost avoidance across the develop-
ment of live training systems to include Combat Training Centers Instrumentation
Systems, Home Station Instrumentation Systems, Instrumented Ranges, and Targetry.
Their Feature-based 2GPLE approach, known as Consolidated Product Line Man-
agement or CPM in the Army, is projected to save another $200M over the next 2-5
years.

Figure 6: Cost avoidance benefits of product line engineering for LT2

US Navy AEGIS Combat System

The AEGIS Combat System is an integrated warfare system deployed on some 100
naval vessels in the U.S. Navy and the navies of key allies across the globe. AEGIS is
deployed on deep-water fleet ships, Littoral Combat Ships, and (more recently) U.S.
Coast Guard National Security Cutters (NSCs) and land-based ballistic missile de-
fense installations. Lockheed Martin’s Maritime Systems and Sensors Division main-
tains the requirements and source code for all product configurations using the Fea-
ture-based 2GPLE paradigm.

In the requirements development phase, requirements are consolidated into a single
database (using IBM Rational’s DOORS tool) for all stakeholder programs using
Gears as the variation engine. This approach avoids redundant efforts and require-
ments capture when managing program-unique databases. Verification of the re-
quirements is also maintained in the DOORS database.

In the software implementation phase, a master software development repository
(CSL) is utilized that contains source files, libraries and configuration files that sup-
port multiple product configurations. Products comprise common and unique capabil-
ities such that modifications to common configurations are implemented once and
feature-based variation is used to automatically include or exclude each capability
from a product.

The combined savings of product line versus clone and own has totaled in excess of
$80 million over the past 3 years. Requirements savings for all government agencies
has totaled $39 million over the past 3 years. For testing, additional integration testing
across multiple programs (instead of one) added 40% in cost to the initial fix, a cost
that is gone as well.

Copyright © 2020 BigLever Software, Inc. 10

The combined savings of
product line versus clone
and own has totaled in
excess of $80 million over
the past 3 years.

Figure 7: The missions of AEGIS. “ASCM” stands for anti-ship cruise missile.
“DDG” and “CVN” signify destroyer and aircraft carrier, respectively. 

Savings in new development are being observed as well. Developing an element up-
grade for the entire family seems to add, at most, about 10% to the cost of develop-
ment. This is much less than the cost of cloning and adapting the upgrade (and then
testing it) in each of several other programs. Early data collection is trending towards
a 40-60% potential reduction in test cases required for new development.

PLE in Automotive

Automotive engineering is a domain rife with complexity. Producing millions of ve-
hicles per year, each one comprising thousands of parts and potentially different from
the one just before it on the assembly line, is a feat unmatched in manufacturing. Add
to this a slew of next-generation features that require the seamless inter-operation of
formerly-standalone subsystems, and that promise more autonomous operation and
higher-level user interactions. Today’s vehicles must be responsive to the driver’s
intentions while providing the highest levels of safety and reliability under the most
extreme conditions. To meet this challenge, manufacturers have turned to increasingly
sophisticated software and electronics, adding yet another layer of complexity as well
as the opportunity for expensive and image-bruising defects and recalls. General Mo-
tors, among others, is accepting these challenges by adopting the Feature-based 2G-
PLE discipline [9][15].

A trend we are observing is that automotive manufacturing is driving PLE to new
levels of capability and scale because of complexities that, while new to PLE, are
business-as-usual for automakers. Here are some of the most relevant aspects of au-
tomotive manufacturing with respect to the Feature-based 2GPLE discipline:

Lifecycle-wide integration

Full-lifecycle integration is a hallmark of Feature-based 2GPLE, but automotive en-
gineering is driving PLE tools to substantially increase the size of the engineering
ecosystem with which they must seamlessly integrate. A large automotive company
will have made tooling choices for each of its engineering artifacts. Perhaps require-

Copyright © 2020 BigLever Software, Inc. 11

Full-lifecycle integration is a
hallmark of Feature-based
2GPLE, but automotive
engineering is driving PLE
tools to substantially
increase the size of the
engineering ecosystem with
which they must seamlessly
integrate.

ments are managed in IBM Rational DOORS, design models in Sparx Enterprise Ar-
chitect, tests in HP Quality Center, PLM data in Siemens Teamcenter, the owner’s
manual in Microsoft Word, calibration parameter catalogs in Excel spreadsheets,
wiring harnesses in Mentor Graphics Capital, and so forth. To produce the instantia-
tions for individual vehicles, the PLE tooling has to work with each of these tools and
preserve the traceability that exists among the artifacts stored in them.

A compelling example of the payoff that integration with a company’s tooling can
bring is the automatic generation of calibration values. Calibration values are used by
automakers that customize their on-board software by using calibration parameters to
enable or disable capabilities, or tune the ones that are present. In this setting, feature
choices for a vehicle can result in calibration “supersets” being configured to produce
calibration sets targeted precisely for that vehicle. The result will be enormous sav-
ings in terms of many fewer people doing tedious work, fewer errors to correct in the
field as the result of an incorrectly calibrated vehicle, and a vastly shortened process.

Comprehensive constraint capture and enforcement

With thousands of features and feature flavors to choose from, it’s critical to have a
reliable way to encode and capture all of the knowledge about illegal feature combi-
nations, knowledge that by and large resides in subsystem engineers’ heads. Some of
it is obvious – no sunroof for a convertible, please – but much of it is esoteric, de-
tailed, and highly specialized. As discussed previously, the PLE tooling has to be able
to capture and represent these constraints in an intuitive manner, as well as help doc-
ument why the constraints are true. Then, it needs to enforce them. Making feature
choices for a full vehicle involves many hundreds of selections, and the PLE au-
tomation needs to do more than store and enforce assertions. It needs to guide vehicle
engineers through the process every step of the way of making feature choices consis-
tent with the assertions, to prevent any vehicle from being defined and sent to manu-
facturing that violates any of the constraints.

Support for a product line of product lines (of product lines of…)

Features are designed and provided by dozens of different groups. The tooling needs
to support the seamless integration of all of their feature models to build a coherent,
consistent vehicle. Features in turn need to be supported by technology packages:
Choosing a flavor of a park assist feature requires choosing a specific combination of
sensors to feed it. Technology choices in turn need to be realized by specific parts,
captured in a Bill of Materials. The PLE tooling needs to support knitting together all
of the choices that a vehicle comprises, laterally across the organization as well as
vertically down through layers of realization specificity.

Options that remain optional right up to manufacturing

In most PLE realms, products are defined with all choices resolved. In automotive,
the notion of a product family tree comes into play. Vehicles near the top (represent-
ing, say, the platform level) have some choices bound but many left open, whereas
vehicles near the bottom (for, say, a specific brand, model, sales region, and trim lev-
el) have most of their choices selected, but still not all. Options are left open for cus-
tomers to order, which means that choices need to remain unbound right up until
manufacture. Again, the PLE tools have to support this capability.

Option bundles

Options are desirable, but can easily become too much of a good thing. The combina-
torics of even a small number of unbound choices can swamp the company's manu-
facturing capability. Variant and complexity management, sometimes in the form of
defining option packages and assigning them sales codes, is essential and the PLE
tooling must be able to let product line managers define, analyze, and manage those
bundles.

Copyright © 2020 BigLever Software, Inc. 12

PLE is giving automotive engineering a powerful paradigm shift. Instead of deriving
features from a parts list, as has been the mental model in many auto companies, PLE
is allowing vehicle engineers to start the design process by considering features first
and deriving implementation and realization decisions from those. Features drive
parts, not the other way around. This is going to give everyone in the enterprise a
common language – the lingua franca of features mentioned earlier – as well empow-
er customer-first thinking, and streamline the design and manufacturing process.

Conclusion

This paper has introduced product line engineering as a full-fledged engineering dis-
cipline with an established pedigree of providing substantial improvements in devel-
opment time, cost, and product quality, compared to the old one-product-at-a-time
engineering approach. We have also shown that modern Feature-based 2GPLE is not
a “boutique” hand-crafted approach, but comes with a repeatable methodology, cen-
tered around the factory paradigm and backed up by industrial-scale commercially
available tooling. To reinforce this message, we have describe how PLE is being used
in two of the most demanding engineering domains: aerospace and defense, and the
automotive industry.

As Feature-based PLE gains traction across industry sectors, its impact is growing
and expanding further into the mainstream. This is especially evident in the systems
engineering community where Feature-based PLE is acknowledged as one of the
foremost areas of innovation in the field today.

The International Council on Systems Engineering (INCOSE) is spearheading the
upcoming ISO standard 26580 on Feature-based PLE. The INCOSE publication —
Feature-based Systems and Software Product Line Engineering: A Primer — is a 12-
page overview that defines modern Feature-based PLE; introduces its important con-
cepts; explains the economic model behind the overwhelming savings it delivers; dis-
cusses organizational adoption; and provides sources for more information [28].

References

(1) Bachmann, F., Clements, P. “Variability in Software Product Lines,” Technical
report CMU/SEI-2005-TR-01, Software Engineering Institute, 2005.

(2) Beuche, D. Modeling and building software product lines with pure::variants.
Proceedings of the 15th International Software Product Line Conference (Limer-
ick, Ireland, September 08-12, 2008). SPLC ’08, ACM Press, 358, 2008.

(3) Brownsword, L. & Clements, P. A Case Study in Successful Product Line De-
velopment (CMU/SEI-96-TR-016, ADA315802). Pitts- burgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996. http://www.sei.cmu.e-
du/publications/documents /96.reports/96.tr.016.html.

(4) Clements, P., Gregg, S., Krueger, C., Lanman, J., Rivera, J., Scharadin, R.,
Shepherd, J., and Winkler, A., “Second Generation Product Line Engineering
Takes Hold in the DoD,” Crosstalk, The Journal of Defense Software Engineer-
ing, USAF Software Technology Support Center, 2013, in publication.

(5) Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns, Addi-
son-Wesley, 2002.

(6) Czarnecki, K., and Eisenbacher, U. Generative Programming: Methods, Tools,
and Applications, Addison Wesley, 2000.

(7) Dhungana, D., Rabiser, R., Grunbacher, P., Lehner, K., and Federspiel, C., “DO-
PLER: an adaptable tool suite for product line engineering,” Proceedings of the
11th International Software Product Line Conference (Kyoto, Japan, September
10-14, 2007). SPLC '07, Second Volume, 151-152, 2007.

Copyright © 2020 BigLever Software, Inc. 13

(8) Dillon, M., Rivera, J., Darbin, R., Clinger, B., “Maximizing U.S. Army Return
on Investment Utilizing Software Product-Line Approach,” Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC), 2012.

(9) Flores, R., Krueger, C., Clements, P. “Mega-Scale Product Line Engineering at
General Motors,” Proceedings of the 2012 Software Product Line Conference
(SPLC), Salvador Brazil, August 2012.

(10) Foreman, John. “Product Line Based Software Development: Significant Re-
sults, Future Challenges,” Software Technology Conference (STC) 1996.

(11) Jarzabek, S. and Zhang, H. “XML-based method and tool for handling variant
requirements in domain models,” Proceedings of the 5th International Sympo-
sium on Requirements Engineering (Toronto, Canada, August 27-31, 2001).
RE’01, 166-173, 2001.

(12) Kang, K.; Cohen, S.; Hess, J.; Novak, W.; & Peterson, A. “Feature-Oriented
Domain Analysis (FODA) Feasibility Study” (CMU/SEI-90-TR-021,
ADA235785). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990.

(13) Krueger, C. “The Systems and Software Product Line Lifecycle Framework,”
BigLever Software Technical Report #200805071r3, 2010. http://
www.biglever.com/extras/SplLifecycleFramework.pdf.

(14) Krueger, C. “Variation Management for Software Production Lines.” In Pro-
ceedings of the 2nd International Software Product Line Conference, San Diego,
California, pages 37-48, 2007.

(15) Krueger C., Clements, P., “Second Generation Product Line Engineering: A
Case Study at General Motors,” in Systems and Software Variability Manage-
ment: Concepts, Tools, and Experiences, Capilla, Bosch, and Kang, eds.,
Springer, 2013.

(16) Krueger, C. and Clements, P. “Systems and Software Product Line
Engineering,” Encyclopedia of Software Engineering, Philip A. LaPlante ed.,
Taylor and Francis, 2013, in publication.

(17) Lanman, J., Kemper, B., Rivera, J., Krueger, C., “Employing the Second Gener-
ation Software Product-line for Live Training Transformation,” Interservice/In-
dustry Training, Simulation, and Education Conference (I/ITSEC) 2011.

(18) Linden, Frank J. van der, Schmid, Klaus, Rommes, Eelco. Software Product
Lines in Action, Springer, 2007.

(19) Northrop, L., Clements, P. et al. (2009). A Framework for Software Product Line
Practice Version 5.0. http://www.sei.cmu.edu/productlines/tools/framework/in-
dex.cfm

(20) Parnas, D. L. “On the Design and Development of Program Families,” IEEE
Transactions of Software Engineering, Vol. SE-2, No. 1, March 1976.

(21) Rivera, J., Samper, W., Clinger, B. (2008). Live Training Transformation Prod-
uct Line Applied Standards For Reusable Integrated And Interoperable Solu-
tions. Paper No. 483; MILCOM 2008.

(22) Schmid, K. Verlage, M. (2002). “The Economic Impact of Product Line Adop-
tion and Evolution,” IEEE Software, Jul/Aug 2002, pp. 50-57.

(23) Software Engineering Institute, “A Framework for Software Product Line Prac-
tice, version 5.0: Configuration Management,” http://www.sei.cmu.edu/product-
lines/frame_report/config.man.htm

(24) Software Engineering Institute, “Benefits and Costs of a Product Line,” http://
www.sei.cmu.edu/productlines/frame_report/benefits.costs.htm

(25) Software Engineering Institute, “Catalog of Software Product Lines,” http://
www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm

Copyright © 2020 BigLever Software, Inc. 14

(26) SPLC Product Line Hall of Fame, http://splc.net/fame.html

(27) Weiss, D. M. & Lai, C. T. R. Software Product-Line Engineering: A Family-
Based Software Development Process. Reading, MA: Addison-Wesley, 1999.

(28) International Council on Systems Engineering (2019), “Feature-based Systems
and Software Product Line Engineering: A Primer,” https://connect.incose.org/
Pages/Product-Details.aspx?ProductCode=PLE_Primer_2019

Copyright © 2020 BigLever Software, Inc. 15

